Adams S¹, Carbasius Weber E², Champion H³, Chan H⁴, Daly A⁵, Dixon M⁶, Dokoupil K⁷, Egli D⁸, Ellerbrook M⁹, Evans S⁵, Eyskens F¹⁰, Faria A¹¹, Ferguson C¹², Ferreira de Almeida M¹³, Hallam P¹⁴, Jacobs J¹⁵, Jankowski C¹⁶, Lachmann R⁴, Lilje R¹⁷, Link R¹⁸, Lowry S¹⁹, Luyten K¹⁰, MacDonald A⁵, Maritz C⁴, Martins E²⁰, Meyer U²¹, Müller E²², Murphy E⁴, Pyck N¹⁰, Robertson L²³, Rocha J¹³, Saruggia I²⁴, Stafford J⁶, Stoelen L¹⁷, Terry A²⁵, Thom R²⁶, van den Hurk A², van Rijn G²⁷, Webster D¹⁶, White F²⁸, Wildgoose J²⁹, Zweers H³⁰

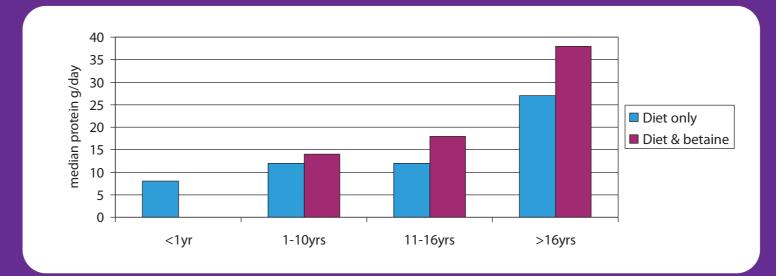
Glasgow Royal Infirmary, Royal Hospital for Sick Children, UK; ²Wilhelmina's Children' ospital, University of Utrecht, Holland; ³Cambridge University Hospital, UK; ^{*}Charles Dent Metabolic Unit, London, UK; ⁵Birmingham Children's Hospital, UK; ⁶Great Ormond Street bital for Children, London, UK; 'Dr. von Hauner Children's Hospital of the University of Munich, Germany; ^{*}CHUV, Lausanne, Switzerland; ^{*}University Children's Hospital, Hamburg Germany; ¹⁰Centre of IMD, Antwerp, Belgium; ¹¹Pediatric Hospital of Coimbra, Portugal; ²Newcastle upon Tyne Hospital, UK; ¹³Medical Genetics Center, National Health Institute, Portugal; ¹⁴Evelina Children's Hospital, London, UK; ¹⁵University Children's Hospital Zurich, Switzerland; ¹⁶Bristol Royal Hospital for Children, UK; ¹⁷Oslo University Hospital Rikshospi talet, Norway; ¹⁸Germany; ¹⁹Sheffield Children's Hospital, UK; ²⁰Maria Pia Hospital, Central Hospital of Portugal; ²¹Hannover Medical School, Germany; ²²Centre for Child & Adolescent Heidelberg, Germany; ²³University Hospitals Birmingham, UK; ²⁴Reference Center for Hereditary Metabolic Diseases-PR Chabrol, Marseille, France; ²⁵Alder Hey Children's Hospi tal, Liverpool, UK; ²⁶Royal Belfast Hospital for Sick Children, UK; ²⁷UMCG, Netherlands; ²⁸Willink Biochemical Genetics Unit & Salford Royal Hospital, Manchester, UK; ²⁹Bradford Teaching Hospitals, UK; ³⁰Radboud University Nijmegen Medical Centre, Netherlands

Dietary Management of Non-Pyridoxine Responsive Homocystinuria

Introduction

- Non-pyridoxine Homocystinuria, an autosomal recessive inherited amino acid disorder, is caused by deficiency of cystathionine β-synthase (CBS).
- Without treatment, increased plasma concentrations of homocysteine, methionine and other sulphur containing metabolites and low

Results


- Data was collected on 163 patients with non-pyridoxine responsive homocystinuria.
- 85% (n=139) were white European, 4% (n=6) Indian, 4% (n=6) Pakistani, 4% (n=7) Black Caribbean/African and 3% (n=5) Arabic.
- Overall, 60% (n=97) of patients (58 UK; 39 non UK) were on a methionine/intact protein restriction (Figures 1&2).
- Newborn screening was uncommon (25% of centres).

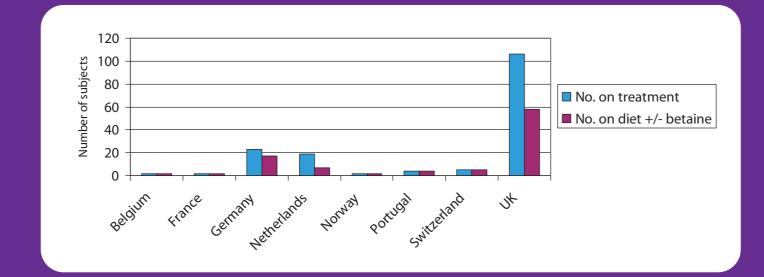
Subject Demographics

Figure 1: Number of subjects on diet

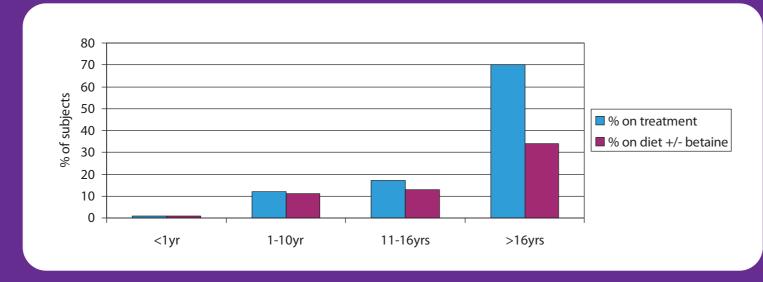
Intact protein intake

Figure 5: Natural protein intake (information available on n=53 subjects)

Natural protein gradually increased with age.


Biochemical indices

- Although the recommendations for blood homocystine/homocysteine (free/total) concentrations did not vary with age, there was little consensus between centres about the recommended blood concentrations they were aiming for (Figure 8).
- There was also wide variation in the frequency of blood monitoring (Figure 9).


Figure 8: Total homocysteine treatment aims by centre (n=25 centres)

concentrations of plasma cysteine, cystathionine and serine occur.

- It is characterized by developmental delay/intellectual disability, ectopia lentis and/or severe myopia, skeletal abnormalities (excessive height and length of the limbs) and thromboembolism.
- Treatment strategies aim to lower plasma total homocysteine, and may use drugs (betaine) or diet (low methionine diet) or a combination of both.
- There is little information about dietary practices in non-pyridoxine responsive homocystinuria across Europe.

Figure 2: Age of subjects

Treatment Choice

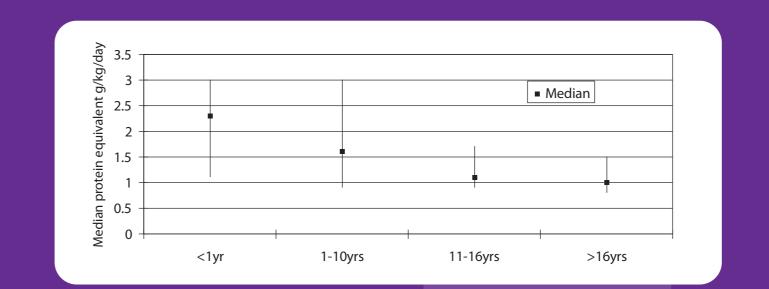

The most common choice of treatment by centres was a combination of diet and betaine (Figure 3). Treatment choice was determined by patient age (46%), problematic experience with diet alone (39%), previous good experience with diet alone (32%), and 21% of centres considered betaine to be efficacious without diet therapy.

Figure 3: Choice of treatment by centre

Methionine-free protein substitute

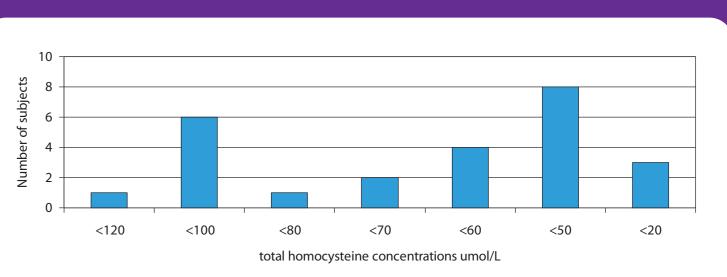
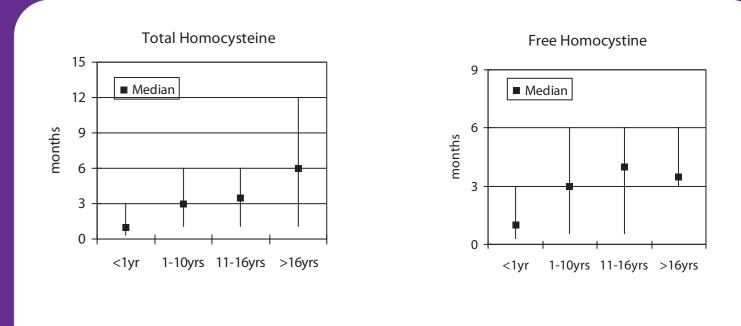
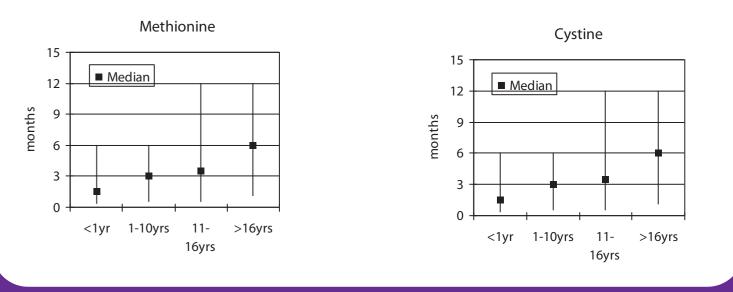

- 94% (n=91/97) of all patients on dietary restriction were taking a methionine-free protein substitute (formula).
- The median protein equivalent in g/kg/day prescribed from both dietary protein (methionine) and protein substitute decreased with age (Figure 6).

Figure 6: Median protein equivalent for the different age bands from both dietary protein (methionine) and protein substitute

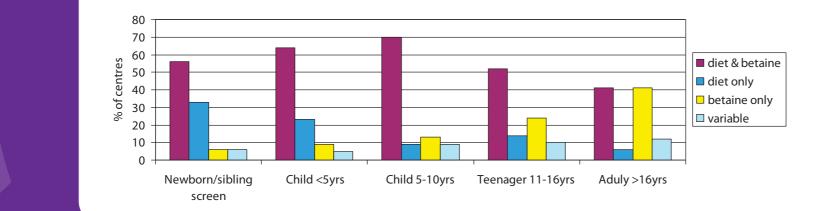



Cystine supplementation

46% (n=13; 10 UK, 3 non-UK) of centres advocated additional cystine supplements only if plasma concentrations were lower than the reference range; and only one centre gave it routinely. 16 subjects from 8 centres were taking cystine supplements.

Figure 9: Frequency of blood monitoring

- 89% (n=25) of centres routinely measured total homocysteine
- 39% (n=11) free homocystine


Methods

A questionnaire consisting of closed and open ended questions about dietary management of non-pyridoxine responsive homocystinuria was distributed to dietitians through the SSIEM-DG network.

Questionnaires were returned from 28 centres (Table 1).

Table 1: Contributing Countries

	No. centres	No. subjects
	From each	on treat-
	country	ment
		(diet and
		drug)
Belgium	1	2
France	1	2
Germany	4	23
Netherlands	3	19
Norway	1	2
Portugal	2	4
Switzerland	2	5
UK	14	106
TOTAL	28	163

Methionine intakes

- Methionine intake increased with age in patients on diet only
- Only 36% (n=10) of centres used the methionine analysis of foods to allocate intact protein allowance. The rest used intact protein analysis.
- Of the centres using methionine analysis, 9 used methionine exchanges (6 UK; 3 non UK).
- All the 6 UK centres used 20 mg exchanges whilst 2 non-UK centres used 10 mg exchanges and 1 non-UK centre used 10 mg for fruit, 20 mg for vegetables and 80 mg for starches.

Figure 4: Methionine intake (information available in n=32 subjects)

Figure 7: Dose of cystine (n=16 subjects)

×.	12 -			
median cystine intake g/day	, 10 - 8 -		 Median 	
tine int	6 -			
lian cys	`4-			
med	2 - 0 -		† 	
		1-10yrs	11-16yrs	>16yrs

Other prescribed supplements

Table 2: Other supplements prescribed

Supplement	Number of centres	%
Essential fatty acids	3*	11
LCP's	6**	21
Low protein foods	26	93
Low protein milks	24	86
Vitamins & minerals	21#	75

*1 of 3 in protein substitute. **3 of 6 in protein substitute. #7 of 21 in protein substitute

- In non-responsive pyridoxine HCU, the use of methionine restricted diet was used less frequently with increasing age, with over half of adult patients on a normal diet. The total protein intake and treatment aims were highly variable.
- management of non-responsive